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The effect of interracial imperfections 
on the micromechanical stress and strain distribution 
in fibre reinforced composites 
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A mathematical model for the determination of micromechanical stress and strain 
distribution in a unidirectional fibre reinforced composite is developed. The model consists 
of three phases represented as concentric cylinders, including the existence of an 
interphase. Both fibre and matrix have well defined elastic properties, while the interphase 
properties follow an exponential law of variation. The effect of an abrupt variation of elastic 
properties at the fibre-interphase boundary on the micromechanical state of stress is also 
presented. The degree of adhesion between fibre and matrix is described by means of 
adhesion parameters introduced, and a parametric study is performed wherein the stress 
and strain distribution around the fibre are determined as a function of adhesion efficiency 
and fibre volume fraction. Analytical results were confirmed by means of a finite element 
technique introduced and applied to the model. 

1 Introduct ion 
High performance composites replace traditional ma- 
terials in structural applications. This is largely due to 
the outstanding mechanical properties offerred by 
them when compared to metals on an equivalent 
weight basis. The adhesion between reinforcement and 
matrix plays an important role in the operation of 
composite material [lJ. Fibre reinforced materials are 
characterized by anisotropy, heterogeneity and inter- 
faces. These imperfections introduce complexities that 
mainly are due to interracial phenomena. The inter- 
face appears to be a preferential diffusion sink for all 
impurities associated with the matrix, the fibre, the 
processing and the environment [2]. The interracial 
region that exists between fibres and matrix is not 
infinitesimally small in thickness; there is a region of 
finite thickness where the composition changes from 
that of the bulk matrix to that of the reinforcement. 
Thus, the region is not strictly an interface, and is 
nowadays referred to as the "interphase" [3]. Based 
on the above mentioned variation of properties, one 
method for estimating fibre-matrix interaction is by 
determining the interphase composition profile [4J. It 
is through the interphase that stresses are transferred 
from the matrix to the fibre. Micromechanical stress 
distribution at the interface between fibre and matrix is 
known to influence the mechanical behaviour of com- 
posites. A large residual stress is believed to originate 
from the difference of thermal expansion coefficients 
between fibre and matrix. Also, stresses at the interface 
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are expected to be different from the volume average 
stress. Thus, the interface is responsible for complex 
residual stress states which are not easily character- 
ized [2]. 

Various mathematical models have been introduc- 
ed either to predict the overall properties of a com- 
posite and/or to characterize their micromechanical 
behaviour in the interphase region. The effect of the 
conditions existing at the surface of the filler particles 
on the thermomechanical behaviour of a particulate 
composite was investigated in [5]. Under the assump- 
tion that the interphase is homogeneous and isotropic 
exhibiting perfect adhesion with both main phases, 
a theory was developed providing quantitative means 
of assessing the adhesion efficiency between the phases 
and its effect on the thermomechanical behaviour of 
the composite. Thermal expansion coefficient and vol- 
ume fraction of the interphase of a large number of 
particulate composites were determined and the effect 
of various parameters were examined in [6]. The effect 
of the boundary interphase on the mechanism of ther- 
momechanical load transfer across the interface in the 
case of composites reinforced with short fibres was 
theoretically investigated in [7]. The variation of the 
glass transition temperature with fibre direction of 
a highly filled unidirectional composite, consisting of an 
epoxy matrix reinforced with long glass fibres, was 
investigated experimentally and explained theoretically 
by means of the interphase concept in [SJ. A model 
with inhomogeneous interphase and continuously 
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varying mechanical properties has been presented in 
[9]. The model was effective in evaluating the extent of 
the boundary interphase giving a quantitative cri- 
terion of the quality of adhesion. The variation of the 
thermal expansion coefficient in the region of the 
boundary interphase and its effect on the transverse 
and longitudinal thermal expansion coefficients in 
fibre reinforced composites was investigated in [10]. 
The variation of the thickness of the boundary inter- 
phase as a function of filler volume fraction in partic- 
ulate composites was investigated in [11]. The influ- 
ence of moisture absorption on the extent of the 
boundary interphase in particulate composites was 
thoroughly studied in [12]. A three-phase theoretical 
model taking into account different shapes of vari- 
ation of the interphase modulus versus the polar 
radius between the fibre and the matrix of a unidirec- 
tional composite material was presented in [ 13], while 
the same basic idea was applied in particulate com- 
posites in [14]. The model was then extended for the 
prediction of the thermal expansion behaviour of par- 
ticulates in [15]. The concept of the interphase was 
also successfully used to explain the elastic, viscoelas- 
tic and thermal behaviour of pretreated asbestos filled 
epoxy polymers in [16-19]. An abrupt variation of the 
elastic modulus at the fibre-interphase boundary was 
considered in the model presented in [20]. It was 
found that the discontinuity of the modulus con- 
sidered at the interphase boundary does not affect the 
longitudinal modulus of elasticity of the model fibre 
composite. In contrast, it was stated that this discon- 
tinuity mainly affects the stress and strain fields de- 
veloped around the fibre rather than overall modulus. 
Pagano and Tandon E21] have developed a model to 
approximate the elastic response of a composite body 
reinforced by coated fibres orientated in various direc- 
tions. The fundamental representative volume element 
is a three-phase concentric circular cylinder under 
prescribed displacement components. The microstress 
distribution inside the fibre, the coating and the 
matrix has been determined under a uniform three- 
dimensional mechanical and/or hygrothermal load- 
ing. A parametric study has also been conducted to 
illustrate how a coating applied to the fibre influences 
the effective thermoplastic properties and can alter the 
state of stress at the fibre-matrix interface and thereby 
modify or control an observed mode of failure. The 
model can be used to provide material guidance for 
controlling the micromechanical failure modes. In the 
case of elastomeric materials, the existence of an inter- 
phase layer between the fibre and matrix, having an 
elastic modulus close to that of the elastomer in its 
glassy state was used i n [22] in order to explain stress 
transfer mechanisms in single fibre composites. More 
recently, a mathematical model based upon the cell 
method was extended in order to describe three-phase 
composite materials containing an interpahse [23]. 

In the present work, a three-phase model has been 
developed in order to study the stress and strain fields 
developed in the region surrounding a fibre embedded 
in a matrix. An exponential law of variation for the 
elastic properties of the interphase material was con- 
sidered. Adhesion parameters are also introduced in 

order to describe elastic discontinuities existed at the 
fibre-interphase boundary. Analytical results were 
verified by respective numerical ones derived from 
a specially developed finite element analysis. 

2. Semi-analytical procedure 
2.1. The proposed model 
The most simple and accurate model for the analysis 
of fibre reinforced composites including an interphase 
is the representative volume element (RVE) [5-7, 14, 
20]. For unidirectional fibre reinforced composites, 
this model consists of three phases, i.e. the fibre, the 
interphase and the matrix, with radii rf, ri and rm re- 
spectively, as shown in the cross section, Fig. 1. In the 
following a short review of the geometric and elastic 
characteristics of the RVE is presented, for complete- 
ness. 

The volume fraction for each phase is determined 
by the relationships 

Vf = (rf/rm) 2 (la) 

V i  = ( r i / rm)  2 - -  V f  (lb) 

Vm= 1 - V i - V r  (lc) 

where subscripts f, i and m denote fibre, interphase 
and matrix, respectively. 

The radii of the fibre and matrix are well defined, 
while the interphase radius can be estimated by means 
of thermal capacity measurements [13]. The outer 
radius of the matrix, rm, is not constant, but it depends 
on the volume fraction of the fibre, Vf. Indeed, from 
Equation (la), it is easily shown that 

r m = r f / ( g f )  1/2 (2) 

By the same way, the thickness of the interphase is 
also dependent on the fibre volume fraction. Fig. 2 
shows the variation of the non-dimensional extent of 
these phases as a function of fibre volume fraction. 

The elastic properties of the interphase may be 
considered as variable, but they must fit to those of 
fibre and matrix at the boundary surfaces. Different 
laws of variation of these properties, namely linear, 
parabolic, hyperbolic and logarithmic have been con- 
sidered in previous studies [13-15]. In all these cases 
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Figure 1 Cross-section of representative volume element. 
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Figure 2 Variation of the reduced interphase thickness with fibre- 
volume fraction. 
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cont inuous  variat ion at the interface between fibre 
and interphase was assumed. In  real composi te  mater-  
ials this is not  true, depending on the interracial condi- 
tions. Generally speaking, an abrupt  variat ion at the 
f ibre-matr ix interface is expected. A proper  way to 
introduce material inhomogeneit ies and imperfections 
is the use of  proper  adhesion parameters.  The ad- 
hesion parameters  ~ and fl describe these condit ions 
and are defined as follows: 

Ei(r = rf) (3a) 
Ef 

f l  = Vi( . . . .  ) (3b) 
Vf 

where E is the modulus  of  elasticity. For  c~ = fl = 1, 
a cont inuous  variat ion of  the elastic properties is ob- 
tained at r = rf. For  e = Em/Er and fi = Vm/Vr a two- 
phase model  is obtained consisting of fibre and matrix 
only. Whereas  adhesion parameters  are defined as 
ratios of individual elastic properties, due to their 
spatial variation, they depend on each other. A func- 
tional relationship between them of the following form 
may  be assumed 

,~ = ~ + 2 (4) 

The constants  ~c and 2 may  be computed  from 
the compatibi l i ty condit ions imposed on e and fi at 
r = r f  

It follows that  

for c~= l ~ f l =  1 

for ~ = Em/E f ~ fi = Vrn/ldf (5) 

1 - t 7  
rc - 1 - ~7 (6a) 

/7--~7 
2 - 1 - -  ~7 ( 6 b )  

where t7 = Em/E f and ~7 = v f / v  m 
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Figure3 Variation of the elastic properties within the interphase: (a) 
modulus of elasticity, and (b) Poisson's ratio. 

In the subsequent analysis it is assumed that  inter- 
phase material inhomogenei ty  is described by an ex- 
ponential  law as follows (Fig. 3) : 

Ei(r) = Arexp  -cr  + B (7a) 

vi(r) = A ' r e x p  c'r + B' (7b) 

The constants  A, B, C, A', B' and C' will be determined 
by the boundary  condit ions of  the problem. The com- 
patibility and continuity condit ions at the bounda ry  
interfaces between various phases have as follows 

Ei( . . . .  ) = 0~Ef, vi(r - rf) = flvf (Sa) 

E~(,. = rm) = Em, vi(r = r~) = Vm (8b) 

dEidr r = r= - dvidr ~ = ~m = 0 (8c) 

F r o m  Equat ion  8a it is evident that  the slope discon- 
tinuity is governed by adhesion parameters.  Substitu- 
tion of Equat ion  8a--c into Equat ion  7a-b  leads to the 
following expressions for the variat ion of the modulus  
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Cm 
aSS ( .... ) -- r2 q- 2Bin (15c) 

2.2. Analytical determination of stress 
and strain fields 

The representative volume element as previously de- 
fined may be used for the elastic analysis of unidirec- 
tional fibre reinforced composites. To solve the uni- 
directional problem, the equivalent one of an inter- 
nally pressurized cylinder of inner and outer radii, 
rf and rm, respectively, is analysed. In the following 
stress analysis, a plane stress problem was assumed. 
The components of strain in cylindrical co-ordinates 
under plane stress conditions are given by 

1 
err = ~(O-rr --  V0"SS ) (12a) 

1 
zOO = ~(asa -- va,~) (12b) 

1 
g= = ~ [  - v(arr + ass)] (12c) 

where arr, aoo, e,,, eoo and e= denote radial, hoop and 
axial stresses and strains respectively. Similarly, the 
stress field is defined by 

1 dq)(r) 
~ ,  - (13a) 

r dr 

de@(r) 
o-ss-  dr 2 (13b) 

a,.~ = 0 (13c) 

where (I)(r) is Airy's stress function. The appropriate 
Airy's stress function that satisfies the given stress field is 

(I)(r) = Cln( r /K)  + Br 2 (14) 

where C, K and B are constants, to be determined 
from the imposed boundary conditions of the prob- 
lem. Applying Equation (13) in each phase of the RVE 
one finds, [13] 

o- = o-~( . . . .  ) =  2Bf (15a) 
rr(,~ = re) 

Cm 
art ( ....... ) = r~  + 2Bm (15b) 

Ci 
~r = r~- + 2B~ (15d) 

rr(r~ <. �9 << r 0 

Ci 
- - - -  + 2Bi (15e) O'S8(~ ~ ~ ~ ~, ) -- r2 

where Bf, Cf, Bm..., are constants to be determined. 
Substitution of Equation 15d and e into Equation 12 
gives the following strain components 

g -- 2~ir 2 + Bi rr( . . . . . . .  ) Gi ( q_ vi ) 
(16a) 

Ci G(] '~._~i) Ui 
%a( ....... , , -  2~iir 2 -}- i( -}- Vi) 

(16b) 

r~ 

Integration of Equation 16a within the interphase 
gives the radial displacement, i.e. 

Ci ( 1  - v i )  ( 1 7 )  
blrrl, ', . . . . .  I - -  2Gi~ + Gi(1 + vi) B i r  

where Gi denotes the shear modulus in the interphase, 
and it is equal to 

Ei 
Gi - - -  (18) 

2(1 + vi) 

The boundary conditions for the radial stress at r = rr 
and r = rm are 

o- = - Po (19a) 
rr(r = rf) 

~ (r~rm ) = 0 (19b) 

where P0 denotes the pressure applied on the inner 
surface of the interphase. In order to account for the va- 
riable elastic properties of the interphase it is assumed 
that it consists of N coaxial ring type elements, as 
shown in Fig. 4. Within each jth ring element it is 
assumed that the elastic properties E{ and v{ remain 
constant. However, an exponential law of variation of the 
elastic properties is assumed to hold between adjacent 
elements, as is shown in Fig. 4. For two adjacent ring 
elements, j and j + 1, the following compatibility and 

of elasticity and the Poisson's ratio, respectively, with- 
in the interphase 

Ei(• ) ~- E m -]- (0{Ef --  E m ) / ( F  ) (9a) 

Yi (F) = Vm ~- (]~Vf -- V m ) R  (f) (9b) 

Spatial parameters appearing in Equation 9 are de- 
fined as follows 

1 - fexp 1 -~ 
R(f) = 1 - ff exp 1 -/~f (10) 

where 

f = - (1 la) 
rl 

t~ = rf = [ V f / ( V i  + Vf)] ~/2 ( l lb)  
Fi 

From Equation 9 it is clear that interphase material 
inhomogeneity depends on the adhesion efficiency bet- 
ween fibre and matrix, as well as on the volume 
fraction of constituents. Thus, the model developed 
depends directly on the above parameters. 

Figure 4 Discretization of interphase in N coaxial rings. 
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continuity conditions exist at their common bound- 
aries, i.e. 

�9 u j +  1 UJrr = v.rr (20a) 
a ] r = a ~  +~, j = 2 , 3 , . . . , N + l  (20b) 

Applying Equation 20 successively at r = rl = rf, 
r = r2 . . . . .  r = rN+ 2 = rm and substituting into Equa- 
tions 15d and 17, respectively, the coefficients B~ and 
C~ may be determined. For  example at r = rj 

C j_ ~ Cj 
+ 2B j_ ~ = _~ + 2Bj (21a) 

rj rj 

- C j - 1  1 - v j _ l  rj 
- -  + - -  B j _  1 
2Gj_lrj 1 ~- Vj_ 1 Gj_ 1 

- -  C j  1 - -  Yj rj Bj (21b) 
= 2Gjr~ + 1 ~v jGj  

j =  2, 3 , . . . , N +  1 

When j = 1 

For  j = N + 2 

CI  
r~- + 2BI = - Po (21c) 

CN+ 1 
r~-~  + 2BN+I = 0 (21d) 

Rearranging Equation 21 and properly assembling it, 
it follows that 

[M]  c = P (22) 

where 

A numerical solution of this equation provides all 
unknown constants which are needed for the elastic 
solution to be evaluated. As the number, N, of ring 
type elements increases, this solution approaches the 
exact solution of the problem. 

2.3. Finite element approach 
The elastic RVE problem stated in previous sections 
was solved using the finite element technique for rea- 
sons of comparison of the accuracy of the ring type 
element approach already presented. Plane stress con- 
ditions were assumed considering a very long fibre 
compared to its diameter. Due to the axisymmetric 
nature of the problem only a small slice of the cross- 
section was considered in the analysis. Fig. 5 depicts 
the domain of the RVE which was discretized in finite 
elements along the numerical solution of the problem 
under consideration. The angle of this sector was 
taken small enough in order to obtain an acceptable 
ratio for the elements' dimensions. The domain was 
discretized in 180 quadratic elements [24-26], from 
which half of them were located in interphase and the 
rest in the matrix. The total number of nodal points 
was 690. The 90 elements within the interphase corres- 
pond to 30 ring type elements, as in the case of the 
analytical approach of the problem. Also, the bound- 
ary conditions were the same, as in the analytical 
approach. 

The material properties of the fibre and matrix 
remain constant. Instead, the elastic properties within 

[ M ]  = 

1 
2 0 0 

1 1 
2 - 2  

- -  1 21r2~_ 1 , r 2 

~-Glr2 (J1 2G2r2 /~2G2 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 - 1  
2 - 2  

- 1 2NrN+I 1 2N+ FN+~I 
2GNrN+I GN 2GN+!rN+I 1GN+ l 

1 
0 0 2 

h+2 

(23a) 

with 

, 1 2 2 C f + , B ; , + , } T  e = { C i B i C i B i  ... - �9 (23b) 

P = { - po00 ... 0} T (23c) 

1--vj  j =  1 , 2 , . . . , N +  1 (24) 
2 j -  1 4-vj' 

where 2 denotes the transpose vector. The dimension 
of the square matrix defined in Equation 23a is 
2(N + 2) - 2, where N denotes the number  of rings 
within the interphase. Equation 22 describes the im- 
posed boundary value problem in a step wise manner. 

F 

x A B C 

Interphase ~ Mat r ix  
F ,E D 

A B; C 
i 

Figure 5 Finite element discretization. 

4545 



the interphase vary exponentially according to Equa- 
tion 9, but remain constant over each element as they 
are evaluated as averaged values. These values were 
introduced in the finite element algorithm, so that the 
variable elastic properties within the interphase were 
taken into account. The uniform internal pressure, 
Po, was applied to the internal edge of each finite 
element at the f ibre- interphase  boundary. A constant 
value of Po = 1 M P a  was assigned for the internal 
pressure. ' 

The discretized form of equilibrium, compatibility 
and continuity equations leads to the following linear 
system of equations [26] 

[ E l  u = f (25) 

where [K]  denotes the stiffness matrix whose coeff• 
cients are functions of the geometry and elastic pro- 
perties; u indicates the vector of nodal displacements 
and f is the vector of the applied external forces. 
Numerical solution of Equation 25 leads to the evalu- 
ation of nodal displacements and averaged stresses 
and strains. 

3. R e s u l t s  
In the following some numerical results are given to 
illustrate the proposed method and to confirm its 
accuracy. Material properties used in this study cor- 
respond to glass fibre composite (permaglass XE5/1, 
Permali Ltd, UK) consisting of an epoxy matrix rein- 
forced with long E-glass fibres. The matrix material 
was based on a diglycidyl amine hardener (araldite 
MY 750/HT972, Ciba-Geigy, UK). The glass fibres 
had a radius of rf = 6 gm and Vf varied from 0.4 to 
0.7. The modulus of elasticity and Poisson's ratio for 
the fibre and matrix w e r e :  E f  = 69.9 GPa,  vf = 0.2, 
E m = 3.2 G P a  and Vm = 0.2 [20]. A computer algo- 
rithm was developed in order to evaluate the adhesion 
parameters c~ and /~ for different values of volume 
fraction, Vf, of the fibre. Within each ring element the 
elastic constants E~ and v~ were computed using Equa- 
tion 9, and the coefficients of the matrix rM] were 
computed using the averaged values of elastic proper- 
ties in each ring element within the interphase. The 
pressure, Po, was taken as minus one, in order to 
normalize the stress and strain fields. The interphase 
was discretized into 30 coaxial ring elements of equal 
thickness and the matrix in five rings. 

Results derived from both the finite element solu- 
tion and the analytical model for the normalized stres- 
ses and strains are shown in Fig. 6a, b for comparison. 
Results shown in these figures refer to some specific 
values of the involved parameters, Vf, rf, r~ and r~, 
while two extreme values of the adhesion parameter, c~, 
were considered. A strong effect of the adhesion para- 
meter, ~, on the stress and strain fields developed 
around the fibre is always present. Especially in the 
area of the interphase, an abrupt variation of the 
absolute values of both the radial and hoop stresses 
(Fig. 6a), as well as of the radial and hoop strains 
(Fig. 6b), takes place. Therefore, the interphase area 
has to be considered as a critical zone. In all cases, an 
excellent agreement between the two approaches is 
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Figure 6 Comparison between analytical 1-( - ) ~ = 1.0 and ( . . . .  ) 
=0.1] and (+ + +) finite element approaches (FEA) at 

Vf = 0.65, rf = 6 gin, ri = 6.235 ~tm and rm = 7.442 gm: (a) nor- 
malized stresses, and (b) strains. 

observed. Finally, as observed, there was no signifi- 
cant increase in the sensitivity of the finite element 
solution when a more dense finite element mesh was 
applied. 

Fig. 7a, b depicts the normalized radial and hoop 
stress distributions, respectively, within the composite 
material, as a function of non-dimensional radial posi- 
tion, for various values of fibre volume fraction and 
adhesion parameter, cc Results for four different values 
of Vf and two different values of ~ are shown. In all 
cases, a high rate of stress variation was found to exist 
within the interphase area. Moreover, as the adhesion 
coefficient decreases, lower radial stresses are de- 
veloped within the composite material. Also, the high- 
er the volume fraction, the higher the radial stress 
developed at the same radial position. Fig. 7b shows 
that for a given radial distance, the normalized hoop 
stress increases with increasing fibre-volume fraction. 
Contrary, the normalized hoop stress was found to 
decrease as the adhesion parameter  decreased. 

Fig. 8a shows the radial strain distribution for four 
different values of the fibre-volume fraction and two 
extreme values of the adhesion parameter. F rom this 
figure it becomes clear, that the radial strain increases 
as the volume fraction increases, while for the same 
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Figure 9 Variation of (a) radial and (b) tangential stresses at r = ri 
versus fibre volume fraction where Ef/Em = 21.844. 

vo lume fract ion and fixed posi t ion,  the radia l  s t ra in  
decreases as the adhes ion  p a r a m e t e r  decreases.  Once  
again,  the highest  ra te  of  va r ia t ion  of  the rad ia l  s t ra in  
is observed  within the in te rphase  mater ia l .  In  all cases, 
the radia l  s t ra in  passes a m i n i m u m  which a lways  lies 
at  the m a t r i x - i n t e r p h a s e  bounda ry ,  r = ri. I t  is recal-  
led tha t  the in te rphase  radius,  ri, depends  on the 
f ibre-volume fract ion and  it is i ndependen t  of the 
p a r a m e t e r  e. 

Fig. 8b depicts  the tangent ia l  s t ra in  d i s t r ibu t ion  
within the compos i t e  material .  One  observes tha t  for 
a fixed value of  adhes ion  p a r a m e t e r  and  radia l  
distance,  e00 increases as the f ibre-volume fract ion 
increases. Also the e00 c o m p o n e n t  increases as the 
p a r a m e t e r  e a t ta ins  higher  values. C o n t r a r y  to the 
err d i s t r ibu t ion  which shows a m i n i m u m  at r = q,  e00 
d i s t r ibu t ion  does not  exhibi t  a m i n i m u m  value at  this 
posi t ion,  but  uni formly  decreases from the in te rphase  
to the mat r ix  mater ia l .  

The var ia t ion  of the  normal i zed  radia l  and  h o o p  
stresses at  the radia l  pos i t ion  r = rl, as a funct ion of  
the f ibre-volume fract ion and  for three different values 
of  the adhes ion  p a r a m e t e r  is shown in Fig. 9a, b, res- 
pectively. In  all cases, an  increase of the stresses with 
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Figure 10 Variation of (a) radial and (b) tangential strains at r = ri 
versus fibre volume fraction where Ef/E m = 21.844. 

increasing fibre-volume fraction and adhesion coeffic- 
ient is observed. The opposite type of variation has 
been observed when the effect of fibre-volume fraction 
and adhesion coefficient on the strain field developed 
around the fibres was studied (Fig. 10a, b). 

4. Conclusions 
An analytical model has been proposed for the com- 
putation of stress and strain distributions in unidirec- 
tional fibre reinforced composites. It was found that 
the radial stress decreases as adhesion between fibre 
and matrix is poor. The radial stress reduces also, as 
the fibre volume fraction decreases. The same behav- 
iour is observed for the hoop stresses. The radial strain 
always passes through a minimum value. Instead, the 
hoop strain reduces smoothly. The analytical ap- 
proach developed in this work was compared with 
a finite element approach. An excellent agreement 

between the results derived by the two methods was 
achieved. The proposed method may be extended and 
used for the failure analysis of fibre reinforced com- 
posites. 
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